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Imprecise Probabilities in Quantum
Mechanics

STEPHAN HARTMANN

It is a pleasure to thank Patrick Suppes for his great support and for many years of stim-
ulating discussions about a wide range of topics of mutual interest. The present project
grew out of these discussions, and I look forward to work with him on it and other projects
for many more years.

1 Introduction

In his entry on “Quantum Logic and Probability Theory” in the Stanford Encyclopedia
of Philosophy, Alexander Wilce (2012) writes that “it is uncontroversial (though remark-
able) that the formal apparatus of quantum mechanics reduces neatly to a generalization
of classical probability in which the role played by a Boolean algebra of events in the lat-
ter is taken over by the ‘quantum logic’ of projection operators on a Hilbert space.” For a
long time, Patrick Suppes has opposed this view (see, for example, the papers collected
in Suppes and Zanotti (1996). Instead of changing the logic and moving from a Boolean
algebra to a non-Boolean algebra, one can also ‘save the phenomena’ by weakening
the axioms of probability theory and work instead with upper and lower probabilities.
However, it is fair to say that despite Suppes’ efforts upper and lower probabilities are
not particularly popular in physics as well as in the foundations of physics, at least so
far. Instead, quantum logics is booming again, especially since quantum information
and computation became hot topics. Interestingly, however, imprecise probabilities are
becoming more and more popular in formal epistemology as recent work by authors
such as James Joyce (2010) and Roger White (2010) demonstrates.

In this essay I would like to give one more reason for the use of upper and lower
probabilities in quantum mechanics and outline the research program that they inspire.
The remainder of this essay is organized as follows. Sec. 2 introduces upper and lower
probabilities. Sec. 3 turns to quantum mechanics and presents the CHSH inequality. We
show that there is not always a joint probability distribution that reproduces observed
quantum correlations. Sec. 4 argues that imprecise probabilities can be defined in these
cases, and Sec. 5 concludes with a number of open questions. \
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2 Imprecise Probabilities

Imprecise probabilities are well known from the theory of uncertain reasoning, Halpern
(2005); Walley (1991). The starting point of the formal developments is the question
of how to represent one’s ignorance about a probability value. One way to do this is
to introduce a lower probability measure P and an upper probability measure P,
where the difference between the two is an agent’s measure of her uncertainty about a
probability assignment. To illustrate this, consider a coin tossing experiment and start
with P,(Heads) = 0 and P*(Heads) = 1, which means that the agent is in a state
of full uncertainty about the outcomes of the coin tossings. Then collect evidence and
update P,(Heads) and P*(Heads) accordingly. If the coin is fair, then both measures
will eventually converge to 1/2, i.e. the probability of a fair coin to land heads. Note
that the use of uppers and lowers is compatible with the existence of a probability value.
The uppers and lowers only express our uncertainty about the probability value.

Upper and lower probability measures are defined as follows Suppes and Zanotti
(1996).

Definition 1 (Upper Probability). Let © be a nonempty set, B a Boolean algebra on
Q, and P* a real-valued function om B. Then Q = (Q, F, P*) is an upper probability
space if and only if for every A and B in B, (i) 0 < P*(A) <1, (ii) P*(0) = 0 and
P*(Q) =1, (ii) if ANB = 0, then P*(AU B) < P*(A) + P*(B).

Definition 2 (Lower Probability). Let 2 be a nonempty set, B a Boolean algebra on €1,
and P, a real-valued function on B. Then O = (Q,F, P,) is a lower probability space if

“and only if for every A and B in B, (1) 0 < P*(A) <1, (i) P.(0) =0 and P(Q) =1,
(iii) if AN B =10, then P,(AUB) > Pi(A) + P.(B).

We also note the following definition:

Definition 3 (Upper-Lower Pair). We call a pair (P, P*) an upper-lower probability
pair Q, if for every A in B we have P.(A) < P*(4).

Note that lower probabilities are super-additive and upper probabilities are sub-
additive, which has several consequences: First, the sum over all atoms of the algebra
may lead to a value greater than 1 for uppers and smaller than 1 for lowers. Second,
while for a probability measure P(A) = > 4/ p B P(A, A’, B, B') holds, the following
inequalities hold for uppers and lowers:

pP*(A)—» Y. P*(A4,A,B,B)
A’,B,B’

P.(A)—» > P(AA,BB).
A’,B,B’

Interestingly, if monotonicity holds, then uppers and lowers are related in the follow-
ing way: P.(A) =1 — P*(A), where A is the complement of A in B. (We will see later
that this relation does not hold in quantum mechanics.) For an interpretation of upper
and lower probabilities in terms of betting odds, see Walley (1991).

3 Quantum Mechanics and the CHSH Inequality

Let us consider four binary random variables A, A’, B and B’ that can take the values

a;,al, by, by = +1 for ¢ = 1,2. We assume symmetry, i.e. we only consider situations
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where E(A) = E(A") = E(B) = E(B’) = 0 with the expectation value £ defined in the
usual way, i.e. E(A) := Z?Zl a; p(a;). Next, we define the quantity

F :=|E(AB) + E(AB') + E(A'B) — E(A'B")|, (1)
where the expectation value
2 2
B(AB) = > a;by Plai,be) = Y asby, P(as,af, be, by) (2)
i,k=1 1,5, k,l=1

measures the correlation between the random variables A and B. P is a probability
measure. Note that F(AB) takes values in the interval [—1, 1] and that these correlations
can be measured. Generalizing Bell’s theorem, Clauser et al. (1969) effectively showed
the following.

Theorem 1. If there is a joint probability distribution P(A, A’,B,B’), then F < 2
(“CHSH inequality”).

The proof is in the appendix.

As is generally known, the CHSH inequality does not always hold. There are experi-
mental setups that exhibit (quantum) correlations which violate the CHSH inequality.
In experiments with correlated photons, for example, one can measure values of F up
to 24/2. These experiments starts with an EPR state of correlated photons, i.e. with
the state |EPR >= 1/v/2 - (J]10 > —|01 >) where [0 > and |1 > represent the photon
polarizations of the two subsystems A and B. One can then find measurement angles
o and o (at A) and 8 and B’ (at B) such that the CHSH inequality is violated. Hence,
there is not always a joint probability distribution over A, A’, B and B’ that reproduces
the expectation values E(AB) etc. Note that these expectation values can be calculated
from quantum mechanics and that the experiments confirm the theory.

Let us now study the CHSH inequality for atoms. Experiments similar to the just-
mentioned photon experiments can be performed with an EPR state of two 2-level atoms
that are trapped in a cavity. Here |0 > and |1 > represent the states of a single 2-level
atom being in the ground state or the excited state, respectively. Let A := X1, A =7y,
B := Xy + Zy and B’ := X, — Zy, where X; denotes the Pauli matrix o, applied to
the state of subsystem 1. Z1, X» etc. are defined accordingly. Note that symmetry holds
ie. B(A) = E(A") = E(B) = E(B') = 0. Next, we calculate E(AB) = E(AB’) =
E(A'B) = —1/2v/2 and E(A'B’) = 1/2v/2. Hence F = 21/2, i.e. the CHSH inequality
is maximally violated.

Next, we examine what happens if the quantum state under consideration decays
under the influence of decoherence Schlosshauer (2007). Clearly, how fast the state
decays will depend on the experimental context. It is known, for example, that the
decay is slower in a cavity than in free space. What is important to us is that if the
EPR state decoheres, then the correlations in the system also decay and the CHSH
inequality will eventually be satisfied after some time 79. Once the CHSH inequality
is satisfied, the correlations can be explained classically, i.e. by a non-contextual local
hidden variables model. Moreover, these correlations can then be accounted for by a
joint probability distribution.

Let us now calculate the time 7o when this is the case. One way of modeling deco-
herence is by coupling the quantum system to a reservoir. One can then write down
the Schrédinger equation for the system plus the reservoir (environment), make the
Born-Markov approximation, trace out the environment and obtain a quantum master
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equation for the reduced state p of the system. p then satisfies the following quantum
master equation, which is of the Lindblad form Breuer and Petruccione (2002):

d B S ) G D G
‘d‘gz“’iz[() D oy palo® _ 25 5ol (3)
1=1

with the decay constant B. Using the theory of Generalized Dicke States, Hartmann
(Forthcoming), this equation can be solved analytically. We then obtain for the time
evolution of the initial state p(0) = |EPR >< EPR|:

p(r) =e " p(0)+ (1 — e 7) |00 >< 00], (4)

with 7 := Bt.
Next, we calculate the expectation values of A, A’, B and B’ as defined above for a
system in the state p(7) and obtain:
<A>=0, <A >>=<B>=-<B >=e¢7-1 (5)

To make sure that symmetry holds for all times 7, we replace A — A:=A-<A>
etc. Clearly, we then have F(A) = E(A’) = E(B) = E(B’) = 0. For the correlations,
we obtain:

<AB>=<AB> , <A'B>=<A'B>—(e"—1)?
<AB'>=< AB'> | < A'B' >=< A'B'> 4(e77 —1)?
Next, we calculate F as a function of 7 (see Eq. (1)). It is easy to see that a joint
probability distribution over A, A’, B and B’ exists if 7 > 75 := 245, i.e. after a relatively
short period of time after the quantum state starts to decay (in units of the inverse decay

constant B). Figure 1 shows F and, for comparison, also F as a function of 7, where F
is calculated using the original operators A, A’, B and B’.

’, i T N T v T * i i K T T T ¥ T K ¥ B

FIGURE 1 F (upper) and F (lower) as a function of 7

4 Imprecise Probabilities in Quantum Mechanics

We have seen that there is a joint probability distribution P for 7 > 74 that reproduces
the experimentally measurable correlations in the decaying EPR state. But how can we
account for the correlations before that time? Hartmann and Suppes (2010) have explic-
itly constructed an upper probability distribution P* that accounts for the correlations
of a decaying EPR state at all times, i.e. before, at, and after 79. We therefore have
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unified account, which allows us to stick to a Boolean algebra, of events. It is not neces- -
sary to work with a non-Boolean algebra in the quantum domain and a Boolean algebra
in the classical domain, as quantum logicians do. All correlations can be accounted for
by an upper probability distribution. This measure is explicitly sub-additive for times
7 < 79 and turns into an additive probability measure for + > 7o I take this to be a main
advantage of the proposed approach to work with imprecise probabilities in quantum
mechanics compared to the alternative quantum logical account, which do not allow for
such a unified treatment.

It is interesting to note that the situation discussed here is similar to the learning
situation discussed in Sec. 2. In the learning case, the upper probability distribution
approximates the proper joint probability distribution more and more as the number
of coin tosses increases. They coincide in the limit of an infinite number of coin tosses.
In the quantum mechanical case, the upper probability distribution approximates the
proper joint probability distribution more and more as the state decays. It coincides
with the joint probability distribution once the CHSH inequality is satisfied (after a
finite decay time). The joint probability distribution emerges from the interaction of
the quantum state with its environment.

For the decaying EPR state, there is also a lower probability measure. This measure
also converges into a probability measure which is defined for times 7 > To- However, the
lower and the upper probability distributions are not related via P,(A) =1— P*(4),
i.e. they do not form an upper-lower pair. This is in line with the fact that there is
no joint distribution for times 7 < 7. Consequently, the monotonicity condition is
violated in quantum mechanics, and upper and lower probability distributions have to
be calculated independently by fitting them to the quantum mechanical expectation
values. It is interesting to further explore the implications of the failure of monotonicity
in quantum mechanics.

5 Open Questions

In future work, we plan to address the following four questions. First, how do our results
generalize? Is it always possible, i.e. for all quantum states and corresponding sets of
measurement operators, to fit an upper and a lower probability distribution? It would
be nice to have a general proof that this is always possible, or a counter example show-
ing that it is not. Our evidence so far is only episodic as we focused on the EPR. state.
Second, what is the proper interpretation of upper and lower probabilities in quantum
mechanics? To address this question, the failure of monotonicity in quantum mechanics
has to be understood. It will also be interesting to relate the discussion of upper and
lower probabilities in quantum mechanics to the recent work on Quantum Bayesianism,
Caves et al. (2007), which may shed some light on interpretational questions regard-
ing upper and lower probabilities in quantum mechanics. Third, to further explore the
relation between logic and probability in quantum mechanics, Gleason’s Theorem has
to be analyzed Hughes (1989). Here special attention has to be paid to the additivity
assumption, which shows up in the proof of the theorem. We ask: What follows if one
allows for sub- and super additive measures? Fourth and finally, what is the advantage
of upper and lower probabilities compared to negative probabilities for which our de-
coherence story can be told as well? Negative probabilities were famously discussed by
Feynman (1987) and have recently attracted the interest of Patrick Suppes. It will be
worth to compare negative probabilities with imprecise probabilities.
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Appendix: Proof of Theorem 1

To prove Theorem 1, we first simplify the notation and denote the value -1 by 0. Next,
we introduce the following abbreviations:

P(1111) = P(0000) :=z; , P(1110) = P(0001) = z5
P(1101) = P(0010) :=z53 , P(1100) = P(0011) = z
P(1011) = P(0100) :=z5 , P(1010) = P(0101) = x¢
P(1001) = P(0110) :=z7 , P(1000) = P(0111) = s,
where we have made use of the symmetry requirement. Note that 0 < z; < 1 for
t = 1,...,8 and that Z§:1 z; = 1/2. We then obtain by using Eq. (2) and similar
equations for the other expectation values:

]:’

4,3.’:1 +$2*$3v$4+$5_$6+$7_$8!
< Az1 + 22 + T3 + T4 + T5 + T + T7 + T3]
< 4x1/2=2,

which completes the proof.
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upon, not something to be proud of. I believe I stated my views on measurement in
such a way that is easy to see where Adolfo and I agree, and where we do not.

Finally in Section 3, Adolfo discusses models of data in a way that I agree with on
many points. But my effort has been to comment on where we disagree, and so this will
be true of my final comment on this last section. In his comment on models of data,
Adolfo emphasizes the distinction between finite data and the use of calculus and con-
tinuous quantities in the theory. I certainly agree that in any serious sense the data are
finite, but the use of the calculus is really only accidental, as we see now so commonly
in physics, where continuous theoretical quantities are mainly computed as numerically
discrete, to meet the requirements of the computer programs doing the calculations. In
fact, physics offers a wonderful example. The theory of approximation of many quantities
has become so precise, and at the same time the mathematical difficulties of reason-
ing about these quantities in the standard form of classical mathematical analysis have
become severe. These two developments have created a veritable revolution in how phys-
ical data are used in theory and in practice. The ever refined approximations of discrete
data and computations now dominate physics, and so it will soon be in economics, as
economists learn how to use all of the massive data that are available to them. Surely,

economics is bound to become one of the “big data” sciences of the future.

8 Stephan Hartmann

I have known Stephan since he was a very young man in graduate school. We have had
so many conversations about the foundations of quantum mechanics and related topics
that I feel that this commentary is just a natural extension of that past. Stephan gives
a clear and informative account of nonmonotonic upper probabilities as one appropriate
framework for analyzing entanglement problems in quantum mechanics.

I want to add one supporting argument to the case he makes for the usefulness of such
upper probabilities. It is not well enough recognized that the Hilbert-space formalism of
von Neumann does not provide a framework for analyzing the individual sample paths
of quantum particles. Rather, it is only mean probabilities that can be brought within
the Hilbert-space formalism. Moreover, this formalism is not a natural one for studying
the behavior of particles, even in the mean, over time. But, it is exactly temporal
processing in decoherence that is central to a proper account. In contrast, the extension
of the theory of nonmonotonic upper probabilities to stochastic processes is relatively
straightforward, and can follow the lines of development of proper stochastic processes,
so thoroughly studied in modern probability theory since the middle of the last century.
I cannot help feeling that the collisions of particles that play such an important role in
classical mechanics can be successfully entirely ignored in the temporal decoherence of
quantum particles. This means I am predicting that the detailed theory of decoherence
will need, in the end, to adopt the methods used in the analysis of stochastic processes,
perhaps especially Brownian motion, with negative probabilities used in analysis of
quantum entanglement. There is much more to be said on these matters, but this is not
the right occasion.

[ thoroughly agree with Stephan’s choice of using the apparatus of upper probabilities
in the framework of classical Boolean algebra. It is notable that the quantum logicians,
by which I refer to those who work on quantum logic that is not classical, mention so
seldom temporal processes, especially those of decoherence or decay. Somehow I feel it is
much easier to accept a continuous sample path that at some point instantaneously loses
its quantum character, for example, its quantum entanglement with another particle,
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rather than to think of a change of logic or algebra at this point. This is not the only
argument, of course, to be considered in this debate, but it is one that occurs to me
naturally and is consonant with the continued emphasis, even in quantum mechanics
on temporal processing.

Finally, I like Stephan’s open questions, and look forward to the solutions he develops
in the future. Earlier in his article, Stephan mentions that physicists as yet have paid
little attention to upper probabilities. No doubt within physics itself, their future is
uncertain, but most surely they are an important and interesting alternative to be
thoroughly explored.

9 R. Duncan Luce

I have known Duncan Luce, I believe, longer than anyone else contributing a paper
to this volume. But this is only the beginning. We worked together on many projects,
especially in the theory of measurement, until the time of his death in 2012. During this
long period, he moved around a, great deal and was on the faculty of several different
universities at different times, but most of his time was spent either at Harvard or UC
Irvine. I have talked to him so much and so often about the theory of measurement that I
almost started to formulate a question for him about another paper in this volume. This
is no longer possible, but I cherish our many years of work together and still have vivid
memories of the times we spent and worked together, including traveling and dining in
many places. I dedicate my commentary to him, but with a certain irony, for I know
my way of looking at measurement was not a favorite of his. I do emphasize that this
is only a particular viewpoint about a particular problem in the theory of measurement
on which we were not entirely in agreement.

My aim is to mitigate any sense of disagreement, by showing how my own viewpoint
supplements, but does not contradict anything Duncan has to say in his generalization
of Hélder’s Theorem. I take the general problem of measurement for both of us, and
many others, has been concern to justify that a given scientific quantity, such as mass
or velocity in physics, or utility in economics or subjective probability in psychology,
satisfies (i) certain structural qualitative axioms, (ii) a quantitative representation the-
orem, (iii) a unique group of transformations defining the quantity’s scale type, and (iv)
invariance of the scientific quantity under this group of transformations. There is no
doubt that the article Duncan contributed here and others he has written are a signif-
icant addition to the literature on Hélder’s Theorem and the more general problem I
defined.

My own approach is to relate the formal properties of a scientific quantity more
directly to the theories that use it. In spite of my dedication to empiricism in the phi-
losophy of science and recognizing the great importance of experimentation, structural
questions are usually dominated by general theory, not a particular theory of measure-
ment. My proposal is one that I made much earlier in a paper written with J.C.C.
McKinsey (1953). The basic idea is straightforward, but can easily lead to the com-
plicated proofs. Characterize the set of all models that can map models of the theory
into models of the theory. The main focus of investigation is to determine the formal
properties of these mappings or, in other language, transformations. For example, what
transformations carry models of classical mechanics into models of classical mechanics.
I use the word “transformations” loosely, because in this setting a transformation of the
entire system is an n-tuple of transformations of scientific quantities that are not inde-
pendent, but ordinarily strongly related, by the laws of the given theory. Each quantity,
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